Fuzzy Case-Based Reasoning System
نویسندگان
چکیده
In this paper, we propose a fuzzy case-based reasoning system, using a case-based reasoning (CBR) system that learns from experience to solve problems. Different from a traditional case-based reasoning system that uses crisp cases, our system works with fuzzy ones. Specifically, we change a crisp case into a fuzzy one by fuzzifying each crisp case element (feature), according to the maximum degree principle. Thus, we add the “vague” concept into a case-based reasoning system. It is these somewhat vague inputs that make the outcomes of the prediction more meaningful and accurate, which illustrates that it is not necessarily helpful when we always create accurate predictive relations through crisp cases. Finally, we prove this and apply this model to practical weather forecasting, and experiments show that using fuzzy cases can make some prediction results more accurate than using crisp cases.
منابع مشابه
A fuzzy reasoning method based on compensating operation and its application to fuzzy systems
In this paper, we present a new fuzzy reasoning method based on the compensating fuzzy reasoning (CFR). Its basicidea is to obtain a new fuzzy reasoning result by moving and deforming the consequent fuzzy set on the basis of themoving, deformation, and moving-deformation operations between the antecedent fuzzy set and observation information.Experimental results on real-world data sets show tha...
متن کاملFuzzy Case Identification in Case Based Reasoning Systems
The most important part of a Case-Based Reasoning system is the retrieval stage, where the system must find in a sometimes-huge case base, the best matching case or cases from which to produce the prediction for the outcome of a given situation. In this paper we propose a fuzzy logic based approach for identifying cases for the similarity measuring stage of case based reasoning systems. We comb...
متن کاملUniversal Triple I Method for Fuzzy Reasoning and Fuzzy Controller
As a generalization of the triple I method, the universal triple Imethod is investigated from the viewpoints of both fuzzy reasoningand fuzzy controller. The universal triple I principle is putforward, which improves the previous triple I principle. Then,unified form of universal triple I method is established based onthe (0,1)-implication or R-implication. Moreover, the reversibilityproperty o...
متن کاملLicense Plate location Determination by Using Case-Based Reasoning
The license plate recognition system is part of the intelligent transportation system. In the intelligent transportation system, the vehicle image is used as the system input. The first step is to improve the image, after the edge detection, a series of morphological operations are performed to identify the plaque. The main purpose of this research was to increase the importance of plate re...
متن کاملReinforcing fuzzy rule-based diagnosis of turbomachines with case-based reasoning
This paper presents an integrated knowledge-based system, which combines fuzzy rule-based reasoning with case-based reasoning, for turbomachinery diagnosis. By incorporating a casebased reasoning sub-system in a fuzzy rule-based system, the integrated system allows past experience to be applied in a more direct way. This helps improve the diagnostic accuracy of the rulebased system. This approa...
متن کاملFuzzy Dissimilarity Learning in Case-Based Reasoning
Case-based reasoning (CBR) attempts to solve new problems by using previous experiences. However traditional CBR systems are restricted by the similarity requirement, i.e., the availability of similar cases to new problems. This paper proposes a novel CBR approach that exploits dissimilarity information in problem solving. A fuzzy dissimilarity model consisting of fuzzy rules has been developed...
متن کامل